

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 246 (2006) 231-236

www.elsevier.com/locate/molcata

Highly efficient Barbier allylation from allyl alcohol using iridium(I)/tin(II): Unusual and indirect roles of allyl alcohol and tin

Moloy Banerjee, Sujit Roy*

Organometallics & Catalysis Laboratory, Chemistry Department, Indian Institute of Technology, Kharagpur 721302, India

Received 12 August 2005; received in revised form 7 November 2005; accepted 7 November 2005 Available online 15 December 2005

Abstract

A reagent combination of $SnCl_2$ and catalytic $[Ir(COD)Cl]_2$ (1 mol%) in THF-H₂O promotes the reaction of allyl alcohol and aldehyde leading to homoallyl alcohols in good to excellent yields. Control studies suggest the plausible participation of π -allyl-iridium intermediate(s) from which direct allyl transfer takes place to aldehyde.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Barbier allylation; Homoallylic alcohol; Diallyl ether; Allyl transfer; *π*-Allyl-iridium

1. Introduction

Barbier allylation of carbonyl compounds using in situ generated allyl-metal offers a straightforward access to synthetically useful homoallyl alcohols, for which a plethora of metal reagents are available today [1-3]. Furthermore, various allyl electrophiles including halides, carbonates, tosylates, mesylates and acetates have been employed, which are synthesized most often from respective allyl alcohols. Not surprisingly, the scope and utility of Barbier allylation increases tremendously when the allyl-metal is generated in situ directly from readily available allyl alcohols. Such a transformation, is very attractive as it obviates customary pre-functionalization to reactive allyl electrophile. However, there are only few reports in this direction [4–12]. Also note that umpolung of a C-OH bond is considerably difficult than a C-X bond. Our continuing interest in the organic reactivity of transition metal/tin reagents, including "Rh-Sn" and "Ir-Sn" combinations [13–16], prompted us to look into carbonyl allylation using allyl alcohol. Herein, we delineate a highly efficient carbonyl allylation reaction from allyl alcohol using tin(II) chloride and catalytic iridium(I) [17]. Control experiments clearly suggested that the reactive allyl electrophile is diallyl ether, and that the reaction does not proceed via usual allyltin inter-

1381-1169/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2005.11.009

mediate instead involves a direct allyl transfer from π -allyl-iridium.

2. Results and discussion

Taking allyl alcohol **2a** and 4-chlorobenzaldehyde **1a** as model substrates, optimization studies were carried out varying the transition metal catalyst, solvent and SnCl₂:alcohol molar ratio. For reactions conducted using SnCl₂:**2a** ratio of 0.75 in THF–H₂O, and judged by the isolated yield of homoallyl alcohol **3a**, [IrCl(COD)]₂ is found to be the best catalyst over Rh(I), Pd(0) and Pd(II), while d⁸-complexes of Ni, Co and Pt failed to react (Table 1).

For example, while 1 mol% of [IrCl(COD)]₂ afforded 95% of **3a** after 4 h, the corresponding rhodium catalyst provided only 47% of the product (entry 1 versus entry 4). The influence of water is noteworthy [18–20]. Screening of solvents with varying dielectric constant and donor ability establish that allylation is favored in organic–aqueous medium compared to only organic or aqueous medium; THF–H₂O (9:1) being the best (Table 2).

Control studies were also carried out varying SnCl₂:alcohol and alcohol:aldehyde molar ratio, and the yield of homoallylic alcohol **3a** was determined after 1 h (Fig. 1). Note that when Sn(II):aldehyde ratio is 1:1, only 32% of **3a** was obtained (Fig. 1A). The yield of **3a** sharply increased with increasing amount of Sn(II), and at a Sn(II):aldehyde ratio of 1.5:1, the yield of **3a** was 83%. Further increase in the amount of Sn(II)

^{*} Corresponding author. Tel.: +91 3222 283338; fax: +91 3222 282252. *E-mail address:* sroy@chem.iitkgp.ernet.in (S. Roy).

Table 1

Reaction of allyl alcohol 2a with 4-chlorobenzaldehyde 1a in the presence of $SnCl_2$ and transition metal catalyst^a

Entry	Catalyst	Yield (%) ^b
1	[Ir(COD)Cl] ₂	95
2	IrCl(CO)(PPh ₃) ₂	69
3	$Ir(SnCl_3)(CO)_2(PPh_3)_2$	64
4	[Rh(COD)Cl] ₂	47
5	RhCl(PPh ₃) ₃	11
6	$Pd_2(dba)_3$	27
7	PdCl ₂ (PhCN) ₂	25
8	$PdCl_2(PPh_3)_2$	19
9	$PtCl_2(PPh_3)_2$	Nil
10	$CoCl(PPh_3)_2$	Nil
11	NiCl ₂ (PPh ₃) ₂	Nil

 a Condition: alcohol (2 mmol), aldehyde (1 mmol), SnCl₂·2H₂O (1.5 mmol), catalyst (0.01 mmol), THF–H₂O (5 mL, 9:1, v/v), reflux, 4 h.

^b Refers to isolated yield of homoallylic alcohol **3a**.

Table 2

Reaction of allyl alcohol 2a with aldehyde 1a in the presence of SnCl₂ and catalytic [Ir(COD)Cl]₂ in various solvents^a

Entry	Solvent	ε	Time (h)	Yield (%) ^b
1	THF-H ₂ O (9:1)	_	4	95
2	THF	7.6	10	34
3	H_2O	80.2	10	9
4	CH ₂ Cl ₂	8.9	10	20
5	CH ₂ Cl ₂ -H ₂ O (9:1)	-	10	87
6	NMP	32.2	10	62
7	NMP-H ₂ O (9:1)	-	10	64
8	MeOH	32.7	10	10
9	MeOH-H ₂ O (9:1)	-	10	42

 a Condition: alcohol (2 mmol), aldehyde (1 mmol), SnCl_2 \cdot 2H_2O (1.5 mmol), catalyst (0.01 mmol), solvent 5 mL, reflux.

^b Refers to isolated yield of homoallylic alcohol **3a**.

did not cause major change in the yield of **3a**. Therefore, the optimized ratio of Sn(II):aldehyde was kept at 1.5:1. The data for the variation in the ratio of alcohol:aldehyde from 1:1 to 2:1 was collected at a fixed concentration of $SnCl_2$ (Fig. 1B). The yield of **3a** did not vary when the alcohol:aldehyde ratio was

above 1.5:1. However, for substituted allyl alcohols a ratio of 2:1 was adjudged as best.

Motivated by the above results, we tested the general applicability of the iridium(I) catalyzed allylation reaction varying both alcohol and aldehyde (Table 3). Gratifyingly, in the majority of cases the corresponding homoallyl alcohols were obtained in good to excellent yields. Gamma-substituted alcohols 2b and 2d gave the corresponding homoallyl alcohols, which are γ -regioselective (entries 4, 5, 9 and 10). The syn/antidiastereoselectivity varied depending on the alcohol and aldehyde. However in case of 1-substituted alcohols 2c and 2e apparent α -regioselective products were obtained (entries 6, 7, 8 and 11). Control studies revealed that this is due to in situ transformation of 1-substituted alcohols to their 3-substituted isomers and corresponding diallyl ethers (see later). In the case of geraniol, alcohol 31 was obtained in 25% yield (entry 12) while formylferrocene resulted in diene 3i in 42% yield due to dehydration of the initially formed homoallyl alcohol (entry 8).

Taking cinnamyl alcohol, various control experiments were carried out to ascertain the primary mechanistic steps in the present allylation reaction. An initial surprise had been our failure to isolate or detect by NMR an allyltin intermediate from the reaction of alcohol and Ir^I–SnCl₂ reagent. On a preparative scale, the reaction of cinnamyl alcohol (1 mmol) and catalytic [IrCl(COD)]₂ (1 mol%) in refluxing THF–H₂O afforded dicinnamyl ether **I**, 3-phenylpropene **II** and cinnamaldehyde **III** in about 1:2:1 ratio. Under identical condition but with [IrCl(COD)]₂ (1 mol%) and SnCl₂ (0.75 mmol) dicinnamyl ether was the major product, the ratio of **I**, **II** and **III** being 5:1:2 (Scheme 1) [21,22]. Treatment of 1-phenyl-2-

Fig. 1. Yield optimization in the $[Ir(COD)Cl]_2$ catalyzed reaction of allyl alcohol **2a** with aldehyde **1a**. All data after 1 h. (A) Data for the reaction of aldehyde (1 mmol), allyl alcohol (2 mmol) and varying amounts of SnCl₂. (B) Data for the reaction of aldehyde (1 mmol), SnCl₂ (1.5 mmol) and varying amounts of allyl alcohol.

Table 3 Ir(I) catalyzed carbonyl allylation using allylic alcohols^a

Entry	Aldehyde	Allylic alcohol	Homoallylic alcohol	Time (h)	Yield (%)/syn:anti
1	$\mathbf{1b} \langle 0 \qquad 1 \mathbf{b} \qquad 0 \qquad \mathbf{b} \qquad$	2a OH	$3b \qquad \bigcirc 0 \qquad 0 \qquad$	12	97
2	lc BnO -CHO	2a / OH	3c BnO OU	10	99
3	1d CH ₃ (CH ₂) ₅ CHO	2a // OH	$3d \qquad \underbrace{CH_3(CH_2)_5}_{OH} OH$	8	93
4	1е СН ₃ —СНО	2 b OH	3e CH ₃ OH	50	89/46:54
5	$\begin{array}{c} \mathbf{1f} \mathbf{Cl} \longrightarrow \mathbf{CHO} \\ \mathbf{Cl} \end{array}$	2ь ОН		48	81/73:27
6	1g MeO — СНО МеО	2c	3g MeO MeO QH	14	73/39:61
7	1h	2c	3h	16	77/52:48
8	Ii Fe €	2c	3i OH	12	42 ^b
9	1a СІ — СНО	^{Рh} ОН 2d	3j _{Cl} [±] Ph _{QH}	72	99/0:100
10	1j CH ₃ (CH ₂) ₇ CHO	^{Ph} OH 2d	3k $CH_3(CH_2)_7$	16	72/0:100
11	1a CI CHO	2e Ph OH	3j CI OH	72	88/0:100
12	сно 1k	страна стран	BnO 31	64	25/23:77

^a Condition: alcohol (2 mmol), aldehyde (1 mmol), SnCl₂·2H₂O (1.5 mmol), [Ir(COD)Cl]₂ (0.01 mmol), THF-H₂O (5 mL, 9:1, v/v), reflux. ^b E:Z=64:36.

propenyl alcohol **2e** with Ir^{I} -SnCl₂ also led to the formation of dicinnamyl ether **I** along with isomeric cinnamyl alcohol (Scheme 2).

We further noted that the carbonyl allylation reaction could be carried out using diallyl ether as the allyl electrophile. Thus, in the presence of Ir^{I} -SnCl₂ as reagent, allylation of aldehyde with dicinnamyl ether was six-fold faster than with cinnamyl alcohol (Scheme 3). Similar reaction of allyl phenyl ether with aldehyde gave rise to homoallyl alcohol along with phenol.

While detailed understanding on the mechanistic course of the reaction must await further studies, a preliminary suggestion is outlined in Schemes 4–7. While suggesting these pathways, we aimed to look into a common organoiridium intermediate,

(i) R = 4-ClC₆H₄, aldehyde (1 mmol), [Ir(COD)Cl]₂ (0.01 mmol), SnCl₂.2H₂O (1.5 mmol), THF-H₂O (9:1 v/v), reflux

which could conform to the major experimental observations, namely (i) formation of dicinnamyl ether **I**, 3-phenylpropene **II** and cinnamaldehyde **III** from cinnamyl alcohol; (ii) formation of cinnamyl alcohol and dicinnamyl ether **I** from 1-phenyl-2propenyl alcohol; (iii) formation of homoallylic alcohol from allyl alcohol or diallyl ether; (iv) absence of allyltin intermediate as suggested by NMR.

Central to our hypothesis are the two π -allyl-iridium intermediates A and B, which could be generated by the oxidative addition of allyl alcohol or diallyl ether (Scheme 4). The two intermediates are shown in both outer-sphere and inner-sphere coordination modes (A, A' and B, B'). Note that the cleavage of the C–O to obtain intermediate B will be easier from diallyl ether than allyl alcohol. Facile oxidative addition of allyl phenyl ether and diallyl ether across Ni(COD)₂, Pd(PCy₃)₄, [PtH(PPh₃)₂]²⁺ and Pd(^tBu₃)₄ to generate the corresponding π -allyl-metal is well known [23–26]. Moreover, since the carbonyl allylation does not proceed without Sn(II), we invoke the formation of Ir–Sn intermediates as in C and D; the allyl transfer step being discussed later (Scheme 7).

The formation of dicinnamyl ether I, 3-phenylpropene II and cinnamaldehyde III from cinnamyl alcohol can be easily explained taking the cinnamyl analogue of intermediate B', involving reductive elimination and β -hydrogen transfer steps (Scheme 5). The cinnamyl analogue of intermediate A could also account for the isomerization of 1-phenyl-2-propenyl alcohol to cinnamyl alcohol (Scheme 6).

Regarding the mechanism of allyl transfer to aldehyde, we rule out the formation of an allyltin species from intermediates **C** or **D** since no organotin species could be detected in control studies. Accordingly we suggest an allyl-transfer directly from π -allyl-Ir (**C** or **D**) to aldehyde via a seven-member transition state **E** (Scheme 7). While this remains highly speculative at the moment, further studies are warranted to resolve the mechanistic issue.

3. Conclusion

In summary, we presented here an efficient Barbier allylation directly from allyl alcohol. Three noteworthy features of the reaction are: (a) that the reaction also proceeds smoothly with diallyl ether, (b) that isomeric 3-substituted allyl alcohol and 1-substituted allyl alcohol leads to the same homoallyl alcohol and (c) that the reaction might not proceed via usual allyltin, instead follow a direct allyl transfer from π -allyl-iridium.

4. Experimental

¹H (200 MHz) and ¹³C{H} (50.6 MHz) NMR spectra were recorded on a BRUKER-AC 200 MHz. Spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: δ 7.27 ppm). Data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, br: broad and m: multiplet), coupling constant (Hz). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: δ 77.0 ppm). ESI-MS and HRMS were taken using a Waters LCT mass spectrometer. Elemental analyses were carried out using a CHNS/O Analyzer Perkin-Elmer 2400 Series II instrument.

4.1. Typical procedure for the reaction of allylic alcohols with aldehydes in presence of $SnCl_2 \cdot 2H_2O$ and catalytic Ir(I)

A mixture of 4-chlorobenzaldehyde **1a** (140.5 mg, 1 mmol) and allyl alcohol **2a** (116 mg, 2 mmol) in peroxide free freshly distilled THF (2 mL) was slowly added to a stirred solution containing SnCl₂·2H₂O (338.5 mg, 1.5 mmol) and [Ir(COD)Cl]₂ (6.7 mg, 0.01 mmol) in peroxide free freshly distilled THF (2.5 mL) and H₂O (0.5 mL) which was previously refluxed for 30 min. The suspension was refluxed at 70 °C under N₂ atmosphere for 4 h (TLC monitoring on silica gel, eluent: ethyl acetate/hexane, 1/9, v/v). An aqueous solution of NH₄F (15%, 10 mL) was added to the reaction mixture and the organic layer was extracted with diethyl ether (3 × 10 mL), washed with water (2 × 10 mL), brine (2 × 10 mL) and dried over magnesium sulfate. Solvent removal followed by column chromatography (eluent: *n*-hexane:ethyl acetate, 97:3) afforded pure 1-(4-chlorophenyl)-but-3-en-1-ol **3a** (174 mg, 95% w.r.t. aldehyde).

¹H NMR (CDCl₃): δ 2.17 (brs, 1H, –CHO*H*), 2.42–2.540 (m, 2H, –C*H*₂–), 4.69 (t, 1H, *J*=6.38 Hz, –C*H*OH), 5.10–5.18 (m, 2H, =C*H*₂), 5.66–5.87 (m, 1H, –C*H*=CH₂), 7.24–7.34 (m, 4H, aryl).

¹³C NMR (CDCl₃): δ 43.71, 72.50, 118.67, 127.13, 128.43, 133.06, 133.89, 142.23.

ESI-MS: for C₁₀H₁₁ClO [M], $[M - OH]^+ = 165.05(^{35}Cl)$ and 167.05(³⁷Cl). HRMS calculated for the fragment ion C₁₀H₁₀Cl $[M - OH]^+ = 165.0471$ found 165.0475(³⁵Cl) and 167.0441 found 167.0452(³⁷Cl).

Anal. (C₁₀H₁₁ClO) calcd, C: 65.76, H: 6.07; found, C: 65.39, H: 6.22.

Acknowledgement

We thank CSIR for financial support, and a senior research fellowship to MB.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.molcata.2005.11.009.

References

- [1] S.E. Denmark, J. Fu, Chem. Rev. 103 (2003) 2763.
- [2] J.A. Marshall, Chem. Rev. 100 (2000) 3163.
- [3] Y. Yamamoto, N. Asao, Chem. Rev. 93 (1993) 2207.
- [4] J.P. Takahara, Y. Masuyama, Y. Kurusu, J. Am. Chem. Soc. 114 (1992) 2577.
- [5] Y. Masuyama, T. Ito, K. Tachi, A. Ito, Y. Kurusu, Chem. Commun. (1999) 1261.
- [6] Y. Kanagawa, Y. Nishiyama, Y. Ishii, J. Org. Chem. 57 (1992) 6988.
- [7] L. Carde, A. Llebaria, A. Delgado, Tetrahedron Lett. 42 (2001) 3299.
- [8] T. Hirashita, S. Kambe, H. Tsuji, H. Omori, S. Araki, J. Org. Chem. 69 (2004) 5054.
- [9] Y. Masuyama, Y. Kaneko, Y. Kurusu, Tetrahedron Lett. 45 (2004) 8969.
 - [10] M. Kimura, M. Shimizu, S. Tanaka, Y. Tamaru, Tetrahedron 61 (2005) 3709.
 - [11] Y. Tamaru, Eur. J. Org. Chem. (2005) 2647.
 - [12] J. Muzart, Tetrahedron 61 (2005) 4179.
 - [13] J. Choudhury, S. Podder, S. Roy, J. Am. Chem. Soc. 127 (2005) 6162.

- [14] M. Banerjee, U.K. Roy, P. Sinha, S. Roy, J. Organomet. Chem. 690 (2005) 1422.
- [15] M. Banerjee, S. Roy, Org. Lett. 6 (2004) 2137.
- [16] P. Sinha, S. Roy, Organometallics 23 (2004) 67.
- [17] After submission of this paper, a related article appeared, Y. Masuyama, T. Chiyo, Y. Kurusu, Synlett (2005) 2251.
- [18] L. Chung, T.H. Chan, Y.-D. Yu, Organometallics 24 (2005) 1598.
- [19] T. Huang, Y. Meng, S. Venkatraman, C.J. Li, J. Am. Chem. Soc. 123 (2001) 7451.
- [20] F. Gyldenfeldt, D. Marton, G. Tagliavini, Organometallics 13 (1994) 906.
- [21] G. Pannetier, R. Bonnaire, P. Fougeroux, J. Organomet. Chem. 30 (1971) 411.
- [22] T. Makino, Y. Yamamoto, K. Itoh, Organometallics 23 (2004) 1730.
- [23] S. Olivero, J.-P. Rolland, E. Dunach, E. Labbe, Organometallics 19 (2000) 2798.
- [24] T. Yamamoto, J. Ishizu, A. Yamamoto, J. Am. Chem. Soc. 103 (1981) 6863.
- [25] T. Yamamoto, M. Akimoto, O. Saito, A. Yamamoto, Organometallics 5 (1986) 1559.
- [26] H.C. Clark, H. Kurosawa, Inorg. Chem. 12 (1973) 357.